Karakterisasi Sistem Panas Bumi Non-Vulkanik pada Manifestasi Air Panas Biatan Bapinang: Studi Pendahuluan
DOI:
https://doi.org/10.56099/ophi.v6i2.p80-91Keywords:
hotspring manifestation, non-volcanic geothermal system, sedimentary basin, basement upliftAbstract
The emergence of hot spring manifestations in Biatan Bapinang, East Kalimantan, is intriguing due to its location, far from active volcanic and tectonic regions. This study aims to investigate possible causes and characteristics of this geothermal system using geological analysis and Bouguer anomaly distribution. Regional geological data and a Digital Elevation Model (DEM) were used to examine rock formations and potential structures that could serve as pathways for hot fluid migration. Bouguer anomaly distribution provided insights into density variations associated with basement depth. Findings indicate that the Biatan Bapinang hot spring manifestation lies at the boundary between a sedimentary basin and a basement uplift. The fluid likely originates from the sedimentary basin, with basement uplift potentially enhancing heat flow that warms subsurface water. Lithological boundaries and possible subsurface structures create preferential pathways for hot fluids to reach the surface. This study suggests that the Biatan Bapinang geothermal system is a non-volcanic, intraplate basin-type system, with a probable heat source from terrestrial heat flow concentrated by the basement uplift and local geological configuration. This research opens opportunities for further studies on geothermal potential in non-volcanic regions, especially in the Biatan area.
References
Arrofi, D., Abu-Mahfouz, I.S., dan Prayudi, S.D., 2022. Investigating high permeable zones in non-volcanic geothermal systems using lineament analysis and fault fracture density (FFD): northern Konawe Regency, Indonesia. Geothermal Energy, 10(1). pp. 29. https://doi.org/10.1186/s40517-022-00241-3
Benderitter, Y., Cormy, G., 1990. Possible approach to geothermal research and relative costs, in: Small Geothermal Resources: A Guide to Development and Utilization. UNITAR, New York, pp. 59–69.
Darman, H., 2017. The Paleogene of East Borneo and its Facies Distribution. Berita Sedimentologi, 37, pp. 5–13. https://doi.org/10.51835/bsed.2017.37.1.94
DiPippo, R., 2016. Geology of Geothermal Regions, in: Geothermal Power Plants. Elsevier, pp. 3–22. https://doi.org/10.1016/B978-0-08-100879-9.00001-X
Escuder-Rodríguez, J.-J., DeCastro, M.-E., Saavedra-Bouza, A., Becerra, M., González-Siso, M.-I., 2022. Insights on Microbial Communities Inhabiting Non-Volcanic Hot Springs. International Journal of Molecular Sciences 23, pp. 12241. https://doi.org/10.3390/ijms232012241
Firdaus, R., Oktaviyani, S., Hardianti, P., Kusmita, T., Indriawati, A., 2021. Identification of Subsurface Rock Structure of Non-Volcanic Geothermal Systems Based on Gravity Anomalies (Terak Village, Central Bangka Regency). JAGI, 5, pp. 539–543. https://doi.org/10.30871/jagi.v5i2.3640
Goff, F., Janik, C.J., 2000. Geothermal systems, in: Encyclopedia of Volcanoes. Academic Press, San Diego, pp. 817–834.
Haenel, R., Rybach, L., Stegena, L., 1988. Fundamentals of Geothermics, in: Handbook of Terrestrial Heat-Flow Density Determination. Springer Netherlands, Dordrecht, pp. 9–57. https://doi.org/10.1007/978-94-009-2847-3_2
Hochstein, M.P., 1988. Assessment and modelling of geothermal reservoirs (small utilization schemes). Geothermics 17, pp. 15–49. https://doi.org/10.1016/0375-6505(88)90004-1
Hosono, T., Yamanaka, C., 2021. Origins and pathways of deeply derived carbon and fluids observed in hot spring waters from non-active volcanic fields, western Kumamoto, Japan. Earth, Planets and Space 73, pp. 155. https://doi.org/10.1186/s40623-021-01478-1
Husein, S., 2017. Sedimentology and Stratigraphy of Upper Tarakan Formation, Tarakan Island, North Kalimantan, Indonesia. The 7th International Annual Engineering Seminar, Yogyakarta.
Kasbani, K., 2009. Tipe Sistem Panas Bumi di Indonesia dan Estimasi Potensi Energinya. Buletin Sumberdaya Geologi, 4(3), pp. 23–30. https://doi.org/10.47599/bsdg.v4i3.184
Kementrian Energi dan Sumber Daya Mineral, 2017a. Buku Potensi Panas Bumi Indonesia 2017 Jilid 1.
Kementrian Energi dan Sumber Daya Mineral, 2017b. Buku Potensi Panas Bumi Indonesia 2017 Jilid 2.
KESDM, 2022. Peta Cekungan Sedimen Indonesia, Skala 1:5.000.000, Kementrian Energi dan Sumber Daya Mineral.
Krisnabudhi, A., Gunawan, A., Putra, Y.A., Amal, A.N., Ardiansyah, F., 2020. New Insight Into Berau Sub-basin North East Borneo: Basin Evolution and Tectonostratigraphy and Their Implication to New Exploration Play Concept, Proceedings Indonesian Petroleum Association Digital Technical Conference 2020, Indonesian Petroleum Association.
Krisnabudhi, A., Sapiie, B., Riyanto, A.M., Gunawan, A., Rizky, F.F., 2022. Mesozoic-Cenozoic Stratigraphy and Tectonic Development of the Southern Great Tarakan Basin, Northeast Borneo, Indonesia. Rudarsko-geološko-naftni zbornik, 37(1), pp. 123-138. https://doi.org/10.17794/rgn.2022.1.11
Maulin, H.B., 2021. Analisis Sesar Tumbuh pada Sistem Tektonik Delta Tersier Di Subcekungan Tarakan, Kalimantan Utara. Bulletin of Geology, 5(2), pp. 570–579.
Mawalid, A., Mardhotilla, A., 2021. Preliminary Study: Identifying the Heat Source of Hot Spring Discovery at Non-Volcanic Region with Gravity Method. IOP Conf. Ser.: Earth Environ. Sci. 873, pp. 012092. https://doi.org/10.1088/1755-1315/873/1/012092
Moeck, I.S., 2014. Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews 37, pp. 867–882. https://doi.org/10.1016/j.rser.2014.05.032
Muffler, L.J., 1979. Assessment of geothermal resources of the United States, 1978. Geological Survey, Reston, VA (USA). Geologic Div.
Nahli, K., Mulyana, F., Tsani, G.E., Alwan, M.A., Darojat, M.H., Hendrawan, R.N., 2016. Identifying Non-Volcanic Geothermal Potential in Amohola, Southeast Sulawesi Province, by Applying the Fault and Fracture Density (FFD) Method. IOP Conf. Ser.: Earth Environ. Sci. 42, pp. 012015. https://doi.org/10.1088/1755-1315/42/1/012015
Ramotoroko, C., Thiede, A., Junge, A., Shemang, E., 2023. Geothermal Resource Mapping in Northern Botswana Inferred from Three-Dimensional Magnetotelluric Inversion. Applied Sciences, 13(20), pp. 11236. https://doi.org/10.3390/app132011236
Sanyal, S.K., 2005. Classification of geothermal systems–a possible scheme, in: Thirtieth Workshop on Geothermal Reservoir Engineering. Stanford University Stanford, California.
Sobari, I., Nasution, J., 2005. Peta Anomali Bouguer Lembar Muaralesan, Kalimantan, Skala 1:250.000, Pusat Penelitian dan Pengembangan Geologi.
Sukardi, Djamal, S., Supriatna, S., Santosa, S., 2011. Peta Geologi Lembar Muaralasan, Kalimantan, Skala 1:250.000, Pusat Survei Geologi.
Suryantini, 2016. Komponen Sistem Hidrotermal - Sumber Panas (Catatan Kuliah Sistem dan Teknologi Geotermal). Institut Teknologi Bandung, Bandung. Unpublished
Tiranda, H., Hall, R., 2021. Structural and stratigraphic development of Offshore NW Sulawesi, Indonesia. (preprints). https://doi.org/10.31223/X5WC89
Umeda, K., Ninomiya, A. and Negi, T., 2009. Heat source for an amagmatic hydrothermal system, Noto Peninsula, Central Japan. Journal of Geophysical Research: Solid Earth, 114(B1). B01202. https://doi.org/10.1029/2008JB005812
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nanda Hanyfa Maulida, Octa Della Puspita, Akroma Hidayatika, Rahmi Mulyasari
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.