Desain Lereng Tambang Optimal Menggunakan Metode Kesetimbangan Batas di Kecamatan Sebulu, Kabupaten Kutai Kartanegara, Provinsi Kalimantan Timur
DOI:
https://doi.org/10.56099/ophi.v5i2.p62-69Keywords:
kemantapan lereng, geoteknik, faktor keamanan, metode bishop, probabilitas kelongsoranAbstract
Penentuan faktor keamanan kelongsoran lereng pada wilayah pertambangan di Desa Mekar Jaya perlu dilakukan untuk menjamin kestabilan lereng yang tersusun atas batuan sangat lemah dan batuan lemah. Batuan penyusun lereng bervariasi dari batuserpih gelap, batupasir lanauan, batulempung gelap, dan batugamping kalkarenit. Faktor keamanan ditentukan pada lereng majemuk menggunakan analisis deterministik dan probabilistik. Pada desain lereng digunakan batas nilai faktor keamanan (FK) statis, dinamis, dan probabilitas kelongsoran (PK) yang mengacu pada Kepmen ESDM No.1827 tahun 2018. Perhitungan dilakukan pada dua lereng yang diperuntukkan sebagai lereng highwall dan lereng jalan tambang. Batuan di daerah penyelidikan berdasarkan pengujian kuat tekan batuan utuh (UCS) berada pada kisaran 0,53 -12,46 Mpa pada kategori R0 (extremely weak rock) hingga R2 (weak rock). Hasil rekomendasi penentuan geometri lereng keseluruhan dari desain rencana tambang yaitu: (1) GT01 dikategorikan stabil dengan litologi batupasir lanauan, batulempung, dan batuserpih dengan tinggi desain 50.94-53.18 meter memiliki nilai FK statis 2.23-1.65, FK dinamis 1.34 – 1.77, dan PK 0%, dan (2) Titik GT02 dikategorikan stabil dengan litologi batuserpih, kalkarenit, dan batulempung dengan tinggi desain 50.9 meter dimana nilai FK statis 1.46-1.49, FK dinamis 1.29-1.48, dan PK 0.8-3.7. Analisis deterministik dan analisis probabilistik pada perencanaan desain tambang dapat dilakukan bersamaan untuk menjadi komparasi dalam pemberian rekomendasi desain tambang batubara agar hasil pengukuran semakin akurat dan aman untuk keselamatan penambangan.
References
Abramson, L. W., Lee, T. S., Sharma, S. & Boyce, G. M. 2001. Slope Stability and Stabilization Methods (2 ed.). New York, John Wiley & Sons.
Amrullah, M. F., Zakaria, Z., Sophian, R. I. & Tunggal, J. 2019. Optimisasi Kestabilan Lereng Tunggal Lapisan Overburden Rencana Tambang Mahayung Dengan Pendekatan Probabilistik. Geoscience Journal, 3(6), pp. 480-488.
ASTM 1995. D2850-03a: Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. PA USA, ASTM Volume 04.08, ICS Code: 93.020. https://doi.org/10.1520/D2850-23
Azizi, M. A., Kramadibrata, S., Wattimena, R. K. & Sidi, I. D. 2013. Probabilistic Analysis of Physical Models Slope Failure. Procedia Earth and Planetary Science, 6, pp. 411-418. https://doi.org/10.1016/j.proeps.2013.01.054
Bathurst, R. J. & Naftchali, F. M. 2023. Influence of uncertainty in geosynthetic stiffness on deterministic and probabilistic analyses using analytical solutions for three reinforced soil problems. Geotextiles and Geomembranes, 51(1), pp. 117-130. https://doi.org/10.1016/j.geotexmem.2022.10.002
Bieniawski, Z. T. & Bernede, M. J. 1979. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), pp. 138-140. https://doi.org/10.1016/0148-9062(79)91451-7
Duncan, J. M., Wright, S. G. & Brandon, T. L. 2014. Soil Strength and Slope Stability (2 ed.). New York, Wiley.
Ghadrdan, M., Dyson, A. P., Shaghaghi, T. & Tolooiyan, A. 2020. Slope stability analysis using deterministic and probabilistic approaches for poorly defined stratigraphies. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(1), pp. 4. https://doi.org/10.1007/s40948-020-00189-3
Griffiths, D. V. & Fenton, G. A. 2007. Probabilistic Methods in Geotechnical Engineering. Vienna, Springer. https://doi.org/10.1007/978-3-211-73366-0
Gurocak, Z., Alemdag, S. & Zaman, M. M. 2008. Rock slope stability and excavatability assessment of rocks at the Kapikaya dam site, Turkey. Engineering Geology, 96(1-2), pp. 17-27. https://doi.org/10.1016/j.enggeo.2007.08.005
Hoek, E. 1990. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 27(3), pp. 227-229. https://doi.org/10.1016/0148-9062(90)94333-o
Hoek, E. & Bray, J. D. 1981. Rock Slope Engineering. London, The Institution of Mining and Metallurgy. https://doi.org/10.1201/9781482267099
ISRM 1979a. Suggested methods for determining water content, porosity, density, absorption and related properties and swelling and slake-durability index properties. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), pp. 143-151. https://doi.org/10.1016/0148-9062(79)91452-9
ISRM 1979b. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(2), pp. 319-368. https://doi.org/10.1016/0148-9062(79)91476-1
Kepmen ESDM 2018. No. 1827 K/30/MEM/2018 tentang pedoman pelaksanaan kaidah teknik pertambangan yang baik.
Komadja, G. C., Pradhan, S. P., Oluwasegun, A. D., Roul, A. R., Stanislas, T. T., Laïbi, R. A., Adebayo, B. & Onwualu, A. P. 2021. Geotechnical and geological investigation of slope stability of a section of road cut debris-slopes along NH-7, Uttarakhand, India. Results in Engineering, 10, pp. 100227. https://doi.org/10.1016/j.rineng.2021.100227
Kormu, S., Sorsa, A., Amena, S. & Bahubalendruni, M. V. A. R. 2022. Correlation of Unconfined Compressive Strength (UCS) with Compaction Characteristics of Soils in Burayu Town. Advances in Materials Science and Engineering, 2022, pp. 1-8. https://doi.org/10.1155/2022/1548272
Li, A. J., Merifield, R. S. & Lyamin, A. V. 2011. Effect of rock mass disturbance on the stability of rock slopes using the Hoek–Brown failure criterion. Computers and Geotechnics, 38(4), pp. 546-558. https://doi.org/10.1016/j.compgeo.2011.03.003
Martin, D. & Stacey, P. 2018. Guideliness for Open Pit Slope Design in Weak Rocks. New York, CRC Press.
Muralha, J., Grasselli, G., Tatone, B., Blümel, M., Chryssanthakis, P. & Yujing, J. 2014. ISRM Suggested Method for Laboratory Determination of the Shear Strength of Rock Joints: Revised Version. Rock Mechanics and Rock Engineering, 47(1), pp. 291-302. https://doi.org/10.1007/s00603-013-0519-z
Price, V. E. & Morgenstern, N. R. 1968. The Analysis of The Stability of General Slip Surfaces. Géotechnique, 18(3), pp. 393-394. https://doi.org/10.1680/geot.1968.18.3.393
Rafiei Renani, H. & Martin, C. D. 2020. Slope Stability Analysis using Equivalent Mohr–Coulomb and Hoek–Brown criteria. Rock Mechanics and Rock Engineering, 53(1), pp. 13-21. https://doi.org/10.1007/s00603-019-01889-3
Supriatna, S., Sukardi & Rustandi, E. 1995. Peta Geologi Lembar Samarinda, Kalimantan. Bandung, Pusat Penelitian dan Pengembangan Geologi.
Winantris, Syafri, I. & Rinawan, R. 2006. Kandungan mikrofosil dalam formasi pembawa batubara dari daerah perian kecamatan muara muntai, kabupaten kutai kertanegara, kalimantan timur. Bulletin of Scientific Contribution, 4(1), pp. 8-18. https://doi.org/https://doi.org/10.24198/bsc%20geology.v4i1.8109
Wroth, C. P. & Wood, D. M. 1978. The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, 15(2), pp. 137-145. https://doi.org/10.1139/t78-014
Zulfahmi, Z., Sarah, D., Novico, F. & Susilo, R. B. 2023. Assessment of Rock Slope Stability in a Humid Tropical Region: Case Study of a Coal Mine in South Kalimantan, Indonesia. Rudarsko-geološko-naftni zbornik, 38(2), pp. 109-125. https://doi.org/10.17794/rgn.2023.2.8

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Roni Marudut Situmorang, Hendra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.